Operating Instructions
 Single/Dual Bourdon Tube Pressure Switches Type BS/BT/BX

Intended Applications 2
Safety Instructions 2
Standards 3
Warranty/Guaranty 3
Installation/Commissioning. 4
Maintenance/Cleaning 8
Technical Data 8

Barksdale
 CONTROL PRODUCTS

Barksdale GmbH

Dorn-Assenheimer Straße 27
D-61203 Reichelsheim
Phone: +49 (6035) 949-0
Fax: $\quad+49$ (6035) 949-111 and 949-113
email: info@barksdale.de

Art. no.: 923-0158
Index Q, 26.08.2022
Specifications are subject
to changes without notice!

Internet: www.barksdale.de

1 Intended Applications

The pressure switches are specifically applied for monitoring and controlling of operations using maximum and minimum pressures. A micro switch triggers an electrical signal when minimum or maximum pressure are reached.

! 1 DANGER

The switch may only be used in the specified fields of application (see type label).
The temperature has to be within the specified ranges, the pressure values and the electrical rating must not exceed the values specified.
Observe also the applicable national safety instructions for assembly, commissioning and operation of the switch.
The switch is not designed to be used as the only safety relevant element in pressurized systems according to PED 2014/68/EU

Without special provisions/actions, pressure switches must not be used for pure hydrogen applications.

2 Safety Instructions

The safety instructions are intended to protect the user from dangerous situations and/or material damage.
In the operating instructions the seriousness of the potential risk is designated by the following signal words:

1 DANGER

Refers to imminent danger to men.
Nonobservance may result in fatal injuries.

1. WARNING

Refers to a recognizable danger
Nonobservance may result in fatal injuries, and destroy the equipment or plant parts.

1. CAUTION

Refers to a danger.

Nonobservance may result in light injuries and material damage to the equipment and/or to the plant.

IMPORTANT

Refers to important information essential to the user.

Disposal
The equipment must be disposed of correctly in accordance with the local regulations for electric/electronic equipment
The equipment must not be disposed of with the household garbage!

3 Standards

The standards applied during development, manufacture and configuration are listed in the CE conformity and manufacturer's declaration

4 Warranty/Guaranty

Warranty

Our scope of delivery and services is governed by the legal warranties and warranty periods.

Terms of guaranty

We guaranty for function and material of the single- / dual- pressure switch under normal operating and maintenance conditions in accordance with the statutory provisions.

Loss of guaranty

The agreed guaranty period will expire in case of:
changes or modifications to the switch/housing/fitting
incorrect use,
incorrect installation or
incorrect handling or operation contrary to the provisions of these operating instructions.
No liability is assumed for any damage resulting therefrom, or any consequential damage.

5 Installation/Commissioning

A Danger

Only install or uninstall the switch when deenergized (electrically and hydraulically/pneumatically). Pressure connection and electrical connection must be carried out by trained or instructed personnel according to state-of-the-art standards.

The switch must only be installed in systems where the maximum pressure $\mathrm{P}_{\text {max }}$ is not exceeded (see type label).

. WARNING

Pressure peaks and pressure shocks exceeding the maximum operating pressure are inadmissible.
The maximum operating pressure is the upper final value of the adjustable range or, if specified the pressure indicated as maximum operating pressure. Exceeding the max. operating pressure affects the performance and the life span of the product and may damage it.
Install the pressure switch as far as possible free from vibration, since otherwise the switching accuracy might be impaired.

. WARNING

Check the switch regularly for functioning.
If the switch does not work properly, stop operation immediately!

D 0
 IMPORTANT

All pressure switches are tested for proper functioning before they leave the factory. The factory proof pressures are stated on the type label.

Contact Protection

The micro switches used are normally suitable for both direct and alternating current operation Inductive, capacitive and lamp loads may, however, considerably reduce the life expectancy of a micro switch and, under extreme circumstances, even damage the contacts.

Depending on the application spark suppression and current limiting is recommended (see succeeding figures).

Fig. 1: Protection in case of capacitive loads
R1: Protection against starting current rushes R2,R3: Protection against high discharge currents

Fig. 3: Protection in case of continuous current and inductive load by recovery diode

Fig. 2: Lamp load provided with resistance in parallel or series connection to switch of condensators

Fig. 4: Protection in case of alternating current and inductive load by RC-link

Set point adjustment

IMPORTANT	IMPORTANT
Factory-Provided: pressure (temperature) switch point setting	
We confirm for pressure (temperature) switches that have been factory set the setting will be	
detailed on the label name plate.	
Warranty is not applicable for any changes that may occur due to transportation or installation.	
For critical applications we recommend the setting is checked and re-set if cecessary after	
installation and wirding of the pressure (temperature) switch.	

In pressure switches, a displacement of the pressure sensing element occurs with a change in pressure. Following the displacement of the pressure sensing element operates a microswitch.
Upon delivery of the product, the set points are likely to be found in the middle of the adjustable range. On request, fix set points may be adjusted by our factory. In this event, the point will be indicated on the type plate or any separate plate, $\mathrm{i}=$ increasing, $\mathrm{d}=$ decreasing.
The set point is adjusted by turning the adjustment screw.

Allow pressure switch to reach the desired switch pressure.
Turn adjustment screw clockwise or counterclockwise to actuate the micro switch.

W 0	IMPORTANT		
	$+\Omega$ -	Counterclockwise rotation: Clockwise rotation:	set point increasing set point decreasing

D I ImP IMPORTANT

Please consult the wiring diagram for the contact status at atmospheric pressure (see Fig. 5).

Precise adjustment of set point to actuate on increasing pressure

Lower system pressure to 0 bar.
Increase pressure slowly and check if micro switch is actuated at desired switch pressure.
If necessary, readjust by turning the adjustment screw
Repeat preceding steps until microswitch operates at desired switch pressure.

Precise adjustment of set point to actuate on decreasing pressure

Increase pressure up to a point clearly above the desired switch pressure (at least, switch pressure plus max. hysteresis; not above max. operating pressure).
Lower pressure slowly and check if micro switch is actuated at desired switch pressure.
If necessary, readjust by turning the adjustment screw
Repeat preceding steps until microswitch operates at desired switch pressure.
Following the adjustment of all set points, each set point must be checked and, if necessary, be readjusted.

ITA	IMPORTANT
The adjustment of several set points occurs for each set point as specified above.	

Wiring Code for all Types (Contact status at atm. pressure)

Power circuit (1)	Power circuit ${ }^{(2)}$
$\mathrm{C}=$ purple	$\mathrm{C}=$ brown
NC $=$ blue	NC $=$ orange
NO $=$ red	NO $=$ black

at vacuum $\mathrm{NC} / \mathrm{NO}$ vice versa
Fig. 5: Wiring Code

Use in Hazardous Locations

There are two housing designs for use in hazardous locations
The BX version with an explosion-proof enclosure for Ex d applications.
The Bourdon tube pressure switches with T and X housing are approved for use in intrinsically safe circuits as Ex ia. The intrinsically safe units marked as Ex i must be operated with a certified switch amplifier (see Fig. 6).
The B1S/B2S pressure switch has none of the aforementioned ATEX approvals.
$B X$ pressure switches with explosion-proof enclosures are designed and certified to be used according to UL, CSA , Nema 4, 7, 9 or ATEX regulations.
The wiring between switch and Exi isolation amplifier must meet the local safety requirements. The customer must provide for a highly conductive connection between switch and grounding.

1. WARNING

With option Ex i: The models having light-alloy (aluminium) enclosures or enclosure parts must be protected against all impact or friction which can ignite the explosive atmosphere.

Unprotected area

Ex ia area

Switch amplifier NAMUR
Fig. 6: Operation of pressure switches in intrinsically safe areas

6 Maintenance/Cleaning

Maintenance

The pressure switch is maintenance free. Checking the set points lies within the discretion of the user. The usual preventive maintenance work in accordance with the PED and ATEX guidelines must always be carried out.

Please note that small setpoint drifts may occur during the initial use of the switch (run-in period). To minimize the setpoint drift we can perform a run-in (ageing) process in our works on request. Larger or continuing setpoint drifts during the normal use of the switch may indicate that the measuring system is not used correctly within the specified limits, exceeding the design criteria or is worn-out. This might lead to metal fatigue of the measuring system and it therefore should be replaced before an ultimate rupture of the metal diaphragm might take place. Please consult your supplier or
Barksdale directly for guidelines.

7 Technical Data

See data sheet

Dimensions in mm (inch)

Fig. 7: Bourdon tube pressure switch type B1S .../B2S ...

Fig. 8: Bourdon tube pressure switch type B1T .../B2T ...

Fig. 9: Adapter, adjustable ranges*) see section Adjustable Ranges Pressure Switch Type B1S.../B2S... and Type B1T.../B2T... and Adjustable Ranges Pressure Switch Type B1X., $B 2 X$

Barksdale

Fig. 10: Bourdon tube pressure switch type B1X .../B2X ..

Adjustable Ranges Pressure Switch Type B1S.../B2S... and Type B1T.../B2T...

Pressure range code	Adjustable range [bar]			Max. operating pressure [bar]		Proof press. [bar] (short term)		Max. hysteresis of switch types (end of range)	
	Increasing pressure	Decreasing pressure	B.T	B.S	B.T	B.S	H, GH [bar]	M, GM [bar]	
Overpressure									
12SS	$4.8 \ldots 82$	$3.4 \ldots 81$	100	90	124	103	0,96	1,86	
32SS	$13.7 \ldots 220$	$11.0 \ldots 217$	250	250	330	276	2,68	5,44	
48SS	$22.4 \ldots 330$	$16.5 \ldots 325$	400	370	497	414	2,75	5,90	
65SS* *	$30.3 \ldots 448$	$22.5 \ldots 440$	550	500	672	560	3,58	7,92	
120SS *	$79.3 \ldots 827$	$41.4 \ldots 790$	900	850	1241	1035	16,90	37,90	
180SS *	$79.3 \ldots 950$	$41.4 \ldots 950$	999	999	1655	1380	16,90	37,90	

Adjustable Ranges Pressure Switch Type B1X.../B2X...

Pressure range code	Adjustable range [bar]		Max. operating pressure [bar]	Proof pressure [bar]	Max. hysteresis of switch types (end of range)	
	Increasing pressure	Decreasing pressure		(short term)	H, GH [bar]	M, GM [bar]
Overpressure						
$12 S S$	$5.3 \ldots 83$	$3.4 \ldots 81$	100	125	0,96	1,86
$20 S S$	$13.7 \ldots 137$	$11.0 \ldots 134$	250	331	2,68	5,44
$32 S S$	$22.4 \ldots 220$	$16.5 \ldots 215$	400	497	2,75	5,90
$72 S S^{*}$	$79.3 \ldots 496$	$41.4 \ldots 459$	600	950	16,90	37,90

Electrical Ratings								
Micro switch	Special Characteristics	Volt AC $50 / 60 \mathrm{~Hz}$	Ind. Load A	Res. Load A	Volt DC	Ind. Load A	Res. Load A	Notes
H	Microswitch with silver contacts	$\begin{aligned} & 125 \\ & 250 \\ & 480 \end{aligned}$	$\begin{array}{r} 10 \\ 10 \\ 3 \end{array}$	$\begin{array}{r} 10 \\ 10 \\ 3 \end{array}$	$\begin{array}{r} 6 \\ \text { to } \\ 24 \end{array}$	0.50	0.5	Small hysteresis; high AC / low DC loads
M	Microswitch with silver contacts	$\begin{aligned} & 125 \\ & 250 \\ & 480 \end{aligned}$	$\begin{array}{r} 10 \\ 10 \\ 3 \end{array}$	$\begin{array}{r} 10 \\ 10 \\ 3 \end{array}$	$\begin{array}{r} 12 \\ 24 \\ 250 \end{array}$	$\begin{aligned} & 5.00 \\ & 1.00 \\ & 0.25 \end{aligned}$	$\begin{array}{r} 15.0 \\ 2.0 \\ 0.4 \end{array}$	Medium hysteresis; high AC and DC loads
GH	Microswitch with gold plated	125	1	1	24	1,00	1,00	low change-back values
GM	voltage and low current	30	0.1	0.1	30	0,10	0,10	Medium hysteresis

0 居

IMPORTANT

We recommend to use a prefuse of the maximum current rating from the table above according to the load switched.

We recommend gold plated contacts for all intrinsically safe and other applications with low voltage/power

Approval data for Ex i switches (B1T, B2T and B1X, B2X)	
Approval:	\&x II 1 G Ex ia IIC T6 Ga II 1 D Ex ia IIIC $\mathrm{T}_{200} 100^{\circ} \mathrm{C} \mathrm{Da}$
Certificate no.:	TÜV 20 ATEX 322922X, IECEx TUN 21.0011X
Permissible ambient temperature:	$40^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq+75{ }^{\circ} \mathrm{C}$
Electrical data for	$\mathrm{Ui}=28 \mathrm{~V} \quad \mathrm{li}=50 \mathrm{~mA}$
intrinsically safe application.	$\mathrm{Pi}=0,84 \mathrm{~W} \quad \mathrm{Ci}, \mathrm{Li}$ negligibly small
Standards applied:	EN IEC 60079-0: 2018/AC:2020-02, IEC 600790:2017, EN 60079-11:2012, IEC 60079-11:2011

Approval data for Ex i switches B1T with connector ST1, and B2T with connectors ST1, ST3 Approval:Ex ia IIB T6 Ga
Ex ia IIIC $T_{200} 100^{\circ} \mathrm{C} \mathrm{Da}$

CAUTION

No inadmissible heating can be expected that affect the maximum surface temperature. The maximum surface temperature lies only a small amount above the permissible ambient temperature during operation.

Approval data for Ex d switches (BX)

Approval:
(Ex) II 2 G
Ex db IIC T6 Gb
Ex tb IIIC $780^{\circ} \mathrm{C}$ Db IP66
Permissible ambient
temperature:
$-40^{\circ} \mathrm{C} \ldots+75^{\circ} \mathrm{C}$

Approval data for Ex d switches (BX-option "LT")
Approval:
عx. II 2 G Ex db IIC T5 Gb
II $2 \mathrm{D} \quad \mathrm{Ex}$ tb IIIC $\mathrm{T} 95^{\circ} \mathrm{C}$ Db IP66
Permissible ambient
temperature:
Certificate no.:
Standards applied:
$-60^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
ISSeP08ATEX024X/3
EN 60079-0:2012 + A11:2013
EN 60079-1:2014
EN 60079-31:2014

Operating life time

Normal expected service life (expressed in the number of cycles over the full adjustment range) is appr. 1 million for the pressure switch. This may be extended to 2.5 million cycles max. if only a part of the adjustment range is used (about 20\%).
Switch sensor life may also be effected negatively by:
Media not compatible with the wetted materials.
Too high switch cycling speed or more than 20 cycles per minute.
System cycling pressure exceeding the top of the adjustable range.
The proof pressure must never be exceeded to avoid permanent sensor damage. Matching the working range of the switch to the application is also a key for optimal switch performance. For working range of the switch to the application is also a key for optimal switch performance. For
greatest accuracy the set point should fall in the upper 70% of the adjustable range. For most favourable life the set point should be in the lower 30% of the adjustable range. Therefore, the most favourable combination of accuracy and life factor lies between 30% and 70% of the adjustable range.

