Dimensions UNS1000

Dimensions UNS2000

1 Intended Applications

Barksdale level switches are approved exclusively for industrial applications. The level switches must not be used in situations in which human life depends on proper functioning of the device.

$$
\begin{array}{|l|l|}
\hline \text { A CAUTION } \\
\hline \text { The level switches may only be used in the specified fields of application (see type label). The } \\
\text { temperature ranges must be within the permissible limits. The stated pressures and electrical load } \\
\text { values must not be exceeded. Observe the applicable national safety instructions for assembly, } \\
\text { commissioning and operation of the level switches. }
\end{array}
$$

CAUTION

Ex. When used in zone 0 , the atmospheric pressure in accordance to EN 60079-0:2018, IEC 60079-0: 2017 must be between 0.8 and 1.1 bar absolute. If the level switch is used in a potentially explosive atmosphere outside the permissible pressure range, the type examination certificate serves only as a guideline.

DANGER

Danger due to electrostatic discharge - Metallic process connection parts must be included in the local equipotential bonding (TUV 18 ATEX 214370 X)

Every person installing, commsioning or operating Barksdale level switches must have read and understood these operating instructions.

2 Safety Instructions

The safety instructions are intended to protect the user from dangerous situations and/or materia damage.
In the operating instructions the seriousness of the potential risk is designated by the following signal words:

$\lfloor \pm$	DANGER
Refers to imminent danger to men.	
Nonobservance may result in fatal injuries.	

WARNING

Refers to a recognizable danger
Nonobservance may result in fatal injuries, and destroy the equipment or plant parts

CAUTION

Refers to a danger
Nonobservance may result in light injuries and material damage to the equipment and/or to the plant.

Refers to important information essential to the user.	IMPORTANT
Refers	

The equipment must be disposed of correctly in accordance with the local regulations for electric/electronic equipment
The equipment must not be disposed of with the household garbage!

3 Standards

The standards applied during development, manufacture and configuration are listed in the CE conformity and manufacturer's declaration

4 Warranty/Guaranty

Warranty

Our scope of delivery and services is governed by the legal warranties and warranty periods.

Terms of guaranty

We guaranty for function and material of the level switches under normal operating and maintenance conditions in accordance with the statutory provisions.

Loss of guaranty

The agreed guaranty period will expire in case of:

- changes or modifications to the switch/housing/fitting
- incorrect use
- incorrect installation or
- incorrect handling or operation contrary to the provisions of these operating instructions

No liability is assumed for any damage resulting therefrom, or any consequential damage.
5 Transport/Storage

$\$$ CAUTION	
Jolts and heavy vibrations must be avoided during transport. Storage should be dry and clean.	

CONTROL PRODUCTS

6 Principle of Operation

Figure 1: Sectional drawing-Level switch
All Barksdale level switches work according to the principle shown in picture 1
A float equipped with magnets moves variably with the changing liquid level. The magnetic field of the float actuates a reed switch positioned inside the guide tube at a predefined place and closes or interrupts the current circuit.
If several level switching points are arranged in the stem various alarm functions can be triggered By adding suitable relays the signals can be used in control system or for automatic pump control. Advantages of these switching units: separation from the medium, no mechanical stress

7 Installation/Commissioning

All	IMPORTANT
All level switches are tested for proper functioning before they leave the factory.	

DANGER

Prior to any work on electrical components disconnect them from power supply
The electrical connection may only be made by trained expert staff!

The Barksdale level switches are supplied completely assembled. The level switches are installed through the tank top or bottom side. Sufficient distance must be kept to the tank wall and any installations. The float must move freely
The Barksdale level switches should be installed vertically, if possible. Proper functioning is however, guaranteed up to an inclination of 30°

Contact Protection

The values for current, voltage and power stated on the type label apply to purely resistive loads. Frequently, lamp loads or the like should be switched as well. In these cases protection of the reed switches against voltage and current peaks must be considered
Below some examples are shown concerning the wiring of reed switches for various loads to avoid premature failure.

Figure 2: Protection in case of capacitive load R1: Protection against start-up curren rushes
R2, R3: Protection against discharge currents

Figure 4: Protection at DC and inductive load by recovery diode

Figure 3: Lamp load with parallel or series resistor to switch

Figure 5: Protection at AC and inductive load by RC-link.

CONTROL PRODUCTS

Inductive Loads

Direct current (DC): Connect recovery diode parallel to the load, see picture 4.
Polarity must ensure that the diode will inhibit at normal operating voltage and short-circuit the opposite voltage peaks occurring when opening the switch.
Alternating current (AC): Connect an $R C$ unit parallel to the switch, see picture 5 .
Dimensioning of such an RC unit can be executed according to the nomogram shown in the picture:

Figure 6: Nomogram for the determination of contact arc-dimming for inductive loads

Capacitive Loads and Lamp Loads

Increased inrush currents occur for capacitive loads and lamp loads. High inrush currents can lead to disturbances - even to fusing of contacts. During wiring of charged capacitors (e.g. cable capacities) a sudden discharge will occur. The discharge intensity depends on the capacity and length of the supply cable to the switch to be regarded as series resistor
The discharge current peak is largely reduced by a series resistor. Its size is determined by the capabilities of the respective circuit. The series resistor should be as large as possible to limit the discharge current to a permissible value. These criteria apply analogously to the charging of capacitors, see picture 2.
Wiring lamp loads: The resistance value of cold lamp filaments (not switched on) is about ten times smaller than that of switched on lamp filaments. When the lamp is being switched on the current flow is for a short time ten times higher than in the glowing static state of the lamp. This tenfold inrush current can be reduced to a permissible value by a series-connected current limiting resistor. Parallel connection of a resistor to the switch is another option. The parallel resistor will permanently preheat the filament while the lamp is switched off just so far that it does not yet glow. Both protection systems result in the loss of power

Use in Hazardous Locations

Type of protection " $\bar{\prime}$ i intrinsic safety

The level switches to be used in hazardous locations are principally designed for intrinsically safe circuits ifollowing the applicable regulations and marked by the words $\langle\mathbb{E x}$ Ex ia... on the type plate.
They are only for use in an approved intrinsically safe circuit. The maximum values per circuit are stated on the type label.
See also page 12 of this document

Contact Wiring and Color Code

Group 1 SPST
 Group 2 SPDT

CONTROL PRODUCTS

Group 3 SPST	
	Terminal
- L4	8
	7
¢ L3	6
	5
\% L2	4
- 2 - green	3
L1 brown	2
L1 white	1

NO (NC)

Terminal

L1 brown L1 white

Change over

Temperature switches (TS or TP) and temperature sensors (PT100) are connected to the last contacts possible, unless otherwise specified.

\& CAUTION
 Temperature switches (TS or TP) and temperature sensors (PT100) must be tested for functioning

 before commissioning.
Connection UTS 2000

	Terminal
red	8
blue	7
bink	6
gellow	5
green	3
brown	2
white	1

1. CAUTION

The following notes must absolutely be observed

- The permissible data (see type label) must be kept
- The level switch must be protected against magnetic fields.
- The sliding tube of the level switch must not be bent and severe shocks must be avoided, since otherwise the inert gas contacts (reed contacts) will be damaged.
- Existing adjusting rings, gripping rings or clamping brackets must not be displaced since otherwise the SPST or SPDT function is no longer guaranteed

The max. inrush power according to the data sheet is:

- for level switch - SPST - with 12 mm or 13 mm sliding tube 100 VA
- for level switch - SPDT - with 12 mm or 13 mm sliding tube 60 VA
- for level switch - SPST - with an 8 mm thick sliding tube 40 VA
- for level switch - SPST - with an 8 mm thick sliding tube 3 VA

These power values must not be exceeded since otherwise the switching contacts will fuse. A short circuit will immediately destroy the switching contact.
Long cables take a high capacitive charging current during switching-on. This charging current can be limited by a current limiting resistor of about 20 to $30 \mathrm{Ohm}<1 . \mathrm{W}\rangle$. The resistor is installed in the connecting housing of the level switch.
Metal filament lamps take the three or four-fold of the current during switching-on. Level switches with a switching power of e. g. 100 VA can only switch 25 W filament lamps. This must be taken into account when a filament lamp is used for a continuity check.
When switching direct voltages, a diode must be connected in parallel with inductive consumers, such as relays or solenoid valves, for spark suppression in locking direction.
Cable glands of level switches must be checked for tightness at the connecting housing and at the level switch to ensure that no spray water can penetrate.. If necessary seal by means of filler.

8 Maintenance/Cleaning

§	WARNING
Check the level switch regularly for functioning.	

If the level switch does not work properly, stop operation immediately!

Maintenance

The level switch requires no maintenance.

Cleaning

| $\$ \mathrm{CAUTION}$ |
| :---: | :--- |
| Do not bend or hit the stem when cleaning the guide tube! |

Proceed carefully to remove medium residues from the guide tube, if necessary.

Model	UNS-MS $1 / 8-$ BN25 UNS-VA1/8-VA27	UNS-VA1/4-VA52	UNS-VA / SB4 (without test function) UNS-VA / SB5 (with test function)
Installation position	from the top or from the bottom		on the side
Stem material	Brass CrNi steel 1.4571	CrNi steel 1.4571	CrNi steel 1.4571
Mounting material	G1/8 push-through fitting	G1/4 push-through fitting	Mounting traverse
Float	BN 25, $\varnothing=25 \mathrm{~mm}$ VA27, Ø = 27 mm	VA52, Ø = 52 mm	PE33, Ø= 33 mm
Float material	Buna N CrNi steel 1.4571	CrNi steel 1.4571	Polyethylene PE
min. medium density [$\mathrm{g} / \mathrm{cm}^{3}$]	$\begin{aligned} & \text { BN25: } 0.57 \\ & \text { VA27: } 0.71 \end{aligned}$	VA52: 0.78	0.8
Max. permissible pressure [bar]	15	40	3
Max. permissible temperature	$\begin{aligned} & 80 / 100^{\circ} \mathrm{C} \\ & 105 / 150{ }^{\circ} \mathrm{C} \text {, } \mathrm{CrNi} \text { steel } \end{aligned}$	105/150 ${ }^{\circ} \mathrm{C}$, CrNi steel	$70^{\circ} \mathrm{C}$
Contact type	SPST (NO), SPST (NC), SPDT		SPST
Contact rating	40 VA/W SPST 5 VA/W / SPDT	100 VA/W SPST 60 VA/W / SPDT	40 VA/W SPST
Options	High-temperature version		Test device
Approval	on request, see www.barksdale.de		
Model	UNS-VASB1 (without test function) UNS-VASB (with test function)	$\begin{array}{\|l} \text { UNS-PA16-PA18 } \\ \text { UNS-PA1/2"NPT-PA18 } \end{array}$	UNS-PP16-PP18 UNS-PP1/2"NPT-PA18
Installation position	on the side		
Stem material	CrNi steel 1.4571	Polyamide 6.6	Polypropylene
Mounting material	Mounting traverse	$\begin{array}{\|l\|} \hline \text { M } 16 \times 2 \\ \text { 1/2" NPT, G1/2 } \end{array}$	M 16×2 1/2" NPT
Float	VA52, Ø = 52 mm	$\emptyset=18 \mathrm{~mm}$	
Float material	CrNi steel 1.4571	Polyamide 6.6	Polypropylene
min. medium density [g/cm ${ }^{3}$]	0.7		0.65
Max. permissible pressure [bar]	10	5	
Max. permissible temperature	$80^{\circ} \mathrm{C}$	$60 / 120{ }^{\circ} \mathrm{C}$	$60 / 90{ }^{\circ} \mathrm{C}$
Contact type	SPST / SPDT	SPST	
Contact rating	100 VA/W SPST 60 VA/W / SPDT	60 VA/W	
Options	Test device	on request	
Approval	on request, see www.barksdale.de		

Model	UNS1000	UNS2000
Installation position	from the top or from the bottom	
Stem material	Brass, CrNi steel 1.4571	
Mounting material	Flange and screw connection	
Tightening torque	UNS1000-G (G1'): $40 \pm 5 \mathrm{Nm}$	
Float	BN25, Ø= 25 mm ; VA27, $\varnothing=27 \mathrm{~mm}$	BN30, $\varnothing=30 \mathrm{~mm}$; VA52, $\varnothing=52 \mathrm{~mm}$
Float material	Buna N, CrNi steel 1.4571	
min. medium density [$\mathrm{g} / \mathrm{cm}^{3}$]	BN25: 0.57; VA27: 0.71	BN30: 0.60; VA52: 0.78
Max. permissible pressure [bar]	15	15, 40
Max. permissible temperature	$80 / 100^{\circ} \mathrm{C}$, NBR foamed $105 / 150^{\circ} \mathrm{C}$, CrNi steel	$80 / 100{ }^{\circ} \mathrm{C}$, NBR foamed $105 / 150^{\circ} \mathrm{C}$, CrNi steel
Contact type	SPST (NO), SPST (NC), SPDT	
Contact rating	40 VA/W SPST; 5 VA/W / SPDT	100 VA/W SPST; 60 VA/W / SPDT
Options	Hight-temperature version, temperature sensor	
Approval	on request, see www.barksdale.de	

Electrical contact rating for optional thermo-switch: 12 / 24 V DC, 3.0 A

§ CAUTION

The fittings and flanges must be conductively connected with the tank and integrated in the potential equalization system.

CAUTION

If various electrical components (e. g. reed switch and temperature switch) are used in a level switch, the electrical values of the weakest component must be observed.

No different potentials must be used.

CONTROL PRODUCTS

TÜV 18 ATEX 214370 X Issue 01, IECEx TUN 17.0039 X $-40^{\circ} \mathrm{C} \ldots+75^{\circ} \mathrm{C}$ (with SI, PUR, FEP cable material) In type of protection intrinsic safety Ex ia IIB/IC/IIC circuit.
$\mathrm{Ui}=\mathbf{2 8} \mathrm{V} \quad \mathrm{Ii}=125 \mathrm{~mA} \quad \mathrm{Pi}=0.5 \mathrm{~W}$
$\mathbf{C i}=$ Capacitance of the permanently connected cable
$\mathrm{C}_{\mathrm{c} \text {, wire/wire }+} \mathrm{C}_{\mathrm{c} \text {, wire/screen }} \leq 200 \mathrm{pF} / \mathrm{m}$
$\mathrm{L}_{\mathrm{c}} \leq 1 \mu \mathrm{H} / \mathrm{m}$
Capacitance of 10 m connection cable $=\mathbf{2 n F}$

EN 60079-0 : 2018, IEC 60079-0: 2017 Explosive atmospheres - Part 0: General requirements EN 60079-11: 2012, IEC 60079-11: 2011
intrinsic safety """ ,

Explosive atmospheres - Part 26: Equipment with protection leve EPL Ga

CAUTION

Special conditions for use

1. Metallic process connection parts have to be included in the local potential equalization. A good electrically conductive connection between float switch and system ground must be ensured.
2. For the use in IIC-areas that require EPL Ga each float switch and limit switch, must be installed and used in such a way that electrostatic charges through operation, maintenance and cleaning are excluded.
3. For the use in areas that require EPL Da all float switches and limit switch must be protected from strong charge generation mechanisms.
4. By using an aluminium terminal box $\mathrm{KX4}(\mathrm{C}), \mathrm{KX8}(\mathrm{C}), \mathrm{KXP}(\mathrm{C}), \mathrm{KLS} 1(\mathrm{C})$ or $\mathrm{KLS2}(\mathrm{C})$ in areas that require EPL Ga, the danger of ignition by impact or friction must be excluded.
5. For EPL Ga/Gb applications and at risks by pendulum or vibration the respective parts of the float switches resp. the limit switch have to be secured effectively against these dangers.
6. For EPL Ga/Gb applications the medium tangent materials of the float switches resp. the limit switch have to be resistant to the media.
7. For EPL Ga/Gb applications the whole devices shall be mounted in a way that allows an installation that results in a sufficient tight joint (IP66 or IP67) or a flameproof joint (EN 60079-1) in the direction of the less endangered area.
