Approval data for type MT1H, T2H, T1X, T2X, ML1H, L2H, L1X
Type of protection "i" intrinsic safety

Approval:

Certificate no.:
Permissible ambient temperature:
Electrical data for intrinsically safe application:

Standards applied:

Ex) II1G Ex ia IIC T6 Ga
II 1 D Ex ia IIIC $\mathrm{T}_{2010} 100^{\circ} \mathrm{C} \mathrm{Da}$
TÜV 20 ATEX 248751 X, IECEx TUN 21.0003X
$-40^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq+75^{\circ} \mathrm{C}$
$\mathrm{Ui}=\mathbf{2 8} \mathrm{V} \quad \mathrm{Ii}=\mathbf{5 0} \mathrm{mA}$
$\mathrm{Pi}=0,84 \mathrm{~W} \quad \mathrm{Ci}, \mathrm{Li}=$ negligibly small
EN IEC 60079-0:2018/AC:2020-02, IEC 60079-0:2017 EN 60079-11:2012, IEC 60079-11: 2011

1. CAUTION

Special conditions for use:

1.The size of the nameplate exceeds the permissible area and can therefore be electrostatically charged For IIC Ga uses the temperature switches have to be installed and used in such a way, that electrostatic charging from operation, maintenance and cleaning is excluded. For the use in explosive durst atmospheres process-related electrostatic charges, e.g. due to passing media have to be excluded. 2.All metallic parts of the devices have to be included in the local potential equalization.
3.The intrinsically safe circuit of the device is connected to the earth potential, therefore potential equalization has to exist in the entire area of the installation of the intrinsically safe circuit.
4.The housings of the devices consist of more than 10% aluminum, therefore in EPL Ga applications the installation has to be carried out in such a way, that ignition hazard due to impact or friction can be excluded.
5.Some of the available process connections consist of more than 65% copper, therefore, when these devices are used in acetylene atmospheres, they have to be installed in such a way that the creation of acetylides or a risk due to friction or impact can be excluded.

CAUTION

No inadmissible heating can be expected that affect the maximum surface temperature. The maximum surface temperature lies only a small amount above the permissible ambient temperature during operation.

Operating life time
The switches are designed for an operating life time of at least 1 million cycles when used under normal design criteria.

Approval data for type TX, LX
Type of protection "d" explosion-proof enclosure

Approval:

Certificate no.:
Standards applied:

<x
 II2 G
 Ex db IIC T6 Gb Ex tb IIIC T80 ${ }^{\circ} \mathrm{C}$ Db IP66 $-40^{\circ} \mathrm{C} \leq \mathrm{Tamb} \leq+75^{\circ} \mathrm{C}$

ISSeP08ATEX024X/3
EN 60079-0: 2012+A11:2013
EN 60079-1: 2014
EN 60079-31: 2014

Operating Instructions

Mechanical Temperature Switches Type MTH/TH/TX/MLH/LH/LX

Operating Instructions

Intended Applications

Safety Instructions
Standards
Warranty/Guaranty
5 Transport/Storage
6 Installation/Commissioning
7 Maintenance/Cleaning
8 Technical Data

Barksdale
 CONTROL PRODUCTS

Barksdale GmbH

Dorn-Assenheimer Straße 27
D-61203 Reichelsheim
Phone: +49 (6035) 949-0
Fax: $\quad+49$ (6035) 949-111 and 949-113
email: info@barksdale.de
Internet: www.barksdale.de

Art. No.: 923-0183 Index K, 29.08.2022 Specifications are subject
to changes without notice!

CONTROL PRODUCT

Intended Applications

The temperature switches are specifically applied for monitoring and controlling of operations using maximum or minimum temperatures. A microswitch triggers an electrica signal when minimum or maximum temperatures are reached.

© danger

The switch may only be used in the specified fields of application (see type label).
The temperature has to be within the specified ranges, the pressure values and the electrical rating must not exceed the values specified.
Observe also the applicable national safety instructions for assembly, commissioning and operation of the switch.

The switch is not designed to be used as the only safety relevant element in pressurized systems according to PED 2014/68/EU.

Safety Instructions

The safety instructions are intended to protect the user from dangerous situations and/or material damage.
In the operating instructions the seriousness of the potential risk is designated by the following signal words:

```
\ danger
Refers to imminent danger to men.
Nonobservance may result in fatal injuries.
```


1. WARNING

Refers to a recognizable danger.

Nonobservance may result in fatal injuries, and destroy the equipment or plant parts.

A CAUTION

Refers to a danger.

Nonobservance may result in light injuries and material damage to the equipment and/or to the plant.

IMPORTANT

Refers to important information essential to the user.

Disposal
The equipment must be disposed of correctly in accordance with the local regulations for electric/electronic equipment
The equipment must not be disposed of with the household garbage!

Standards

The standards applied during development, manufacture and configuration are listed in the CE conformity and manufacturer's declaration

Warranty/Guaranty

Warranty
Our scope of delivery and services is governed by the legal warranties and warranty periods.
Terms of guaranty
We guaranty for function and material of the single / dual temperature switch under norma operating and maintenance conditions in accordance with the statutory provisions.

Loss of guaranty

The agreed guaranty period will expire in case of:
changes or modifications to the housing/switch/fitting
incorrect use,
incorrect installation or
incorrect handling or operation contrary to the provisions of these operating instructions.
No liability is assumed for any damage resulting therefrom, or any consequential damage.

Transport/Storage

CAUTION

Severe shock and vibrations should be avoided during transport. Storage should be dry
and clean.

Severe shock and vibrations should be avoided during transport. Storage should be dry and clean.

CONTROL PRODUCTS

Installation/Commissioning

1 DANGER

Only install or uninstall the switch when deenergized (electrically and hydraulically/pneumatically).

Process connection and electrical connection must be carried out by trained or instructed personnel according to state-of-the-art standards.

The switch must only be installed in systems where the maximum temperature $\mathbf{T}_{\text {max }}$ is not exceeded (see type label).

WARNING

Be aware of the fact that in case of operation with higher temperatures the casing surface may become very hot!
Ambient temperature range: $-\mathbf{4 0} \ldots+75^{\circ} \mathrm{C}$; max. pressure at sensor: $\mathbf{2 1}$ bar

1. WARNING

In case the temperature falls below or exceeds the permissible temperature limits specified for the sensor and the permissible ambient temperature, the function of the temperature switch can no longer be guaranteed and the temperature switch may be damaged.
Check the operation of the switch regularly. If the switch does not work properly, stop operation immediately!

CAUTION

All standard temperature switches are supplied with cable glands, the explosion-proof switches with threaded plugs covering the electrical connection entry.

These must be removed to install the approved cable gland of your choice.
The capillary system must be installed with care avoiding sharp bends.
Provide protection against damage where needed.

IMPORTANT
The temperature sensing element can be used up to 21 bar. In case of pressures higher than 21 bar the temperature sensing element must be provided with a thermowell suitable for the respective application.

All temperature switches are tested for proper functioning before they leave the factory.

Contact Protection
The micro switches used are normally suitable for both direct and alternating current operation. Inductive, capacitive and lamp loads may, however, considerably reduce the life expectancy of a micro switch and, under extreme circumstances, even damage the contacts.
Depending on the application spark suppression and current limiting is recommended (see succeeding figures).

Fig. 1: Protection in case of capacitive loads R1: Protection agains starting current rushes R2,R3: Protection against high discharge currents

Fig. 3: Protection in case of continuous current and inductive load by recovery diode

Fig. 2: Lamp load provided with resistance in parallel or series connection to switch of condensators

Fig. 4: Protection in case of alternating current and inductive load by RC link

Set point adjustment

ITA	IMPORTANT
Factory-Provided: pressure (temperature) switch point setting We confirm for pressure (temperature) switches that have been factory set the setting will be detailed on the label name plate. Warranty is not applicable for any changes that may occur due to transportation or installation. For critical applications we recommend the setting is checked and re-set if cecessary after installation and wirding of the pressure (temperature) switch.	

CONTROL PRODUCTS

In temperature switches, the liquid expands in the sensing element (capillary) when the temperature changes. Due to the expansion the microswitch is actuated.

Upon delivery of the product, the set points are likely to be found in the middle of the adjustable range. On request, fix set points may be adjusted by our factory. In this event, the point will be indicated on the type plate or any separate plate, $i=$ increasing, $d=$ decreasing. The set point is adjusted by turning the adjustment knob (see figure 7...12).

In
In some cases the corresponding housing cover must be removed in order to reach the adjustment knob.

Heat the temperature switch to the desired switching temperature.
Turn the adjustment knob to actuate the microswitch.

| Please consult the wiring diagram for the contact status at state of rest (see Fig. 5). |
| :--- | :--- |

Precise adjustment of set point to actuate on increasing temperature
Connect a control unit (lamp, buzzer, etc.) to 1 (C) and 4 (NO). When the unit is connected correctly and the sensor temperature is higher than the temperature adjusted on the scale, the buzzer or lamp is not activated.
Adjust the desired switch point with the help of the scale and via the adjustment knob. Watch the switch point while the temperature is rising (about $2^{\circ} \mathrm{C} /$ minute). The control unit is activated when the switch point is reached.
If necessary, readjust the set temperature by some degrees (by means of the scale the temperature can be adjusted with an accuracy of $3 . . .5 \%$ of the scale value).
Precise adjustment of set point to actuate on decreasing temperature
Connect a control unit (lamp, buzzer, etc.) to 1 (C) and 2 (NC). When the unit is connected correctly and the sensor temperature is higher than the temperature adjusted on the scale, the buzzer or lamp is activated.
Adjust the desired switch point with the help of the scale and via the adjustment knob. Increase the temperature (about $2^{\circ} \mathrm{C} /$ minute) until the control unit is deactivated.
Watch the point at which the control unit is activated again while the temperature is falling. This is the set switch point.
If necessary, readjust the set temperature by some degrees (by means of the scale the temperature can be adjusted with an accuracy of $3 . . .5 \%$ of the scale value).

D. ${ }^{78}$

Adjustment of several set points is performed for each set point as specified above. Due to the sluggishness of the capillary system switching delays may occur in case of rapid temperature changes ($>2^{\circ} \mathrm{C} /$ Minute).

Wiring Code for all Types (Contact status at atm. pressure)

Circuit ${ }^{(1)}=$ lower contact (low)
Circuit (2) = upper contact (high)
Fig. 5 Wiring Code
Use in Hazardous Locations
The weather-proof standard temperature switches must not be used for hazardous locations. Depending on the application we offer two versions for hazardous locations:

An intrinsically safe version Ex ia IIC T6 with certificate no.TÜV208ATEX248751X for all standard temperature switches
and the special temperature switch versions T1X, T2X and L1X for Ex db IIC T6 Gb;
Ex tb IIIC T80 ${ }^{\circ} \mathrm{C}$ Db IP66 explosion-proof applications with certificate no.
ISSeP08ATEX024X.
Both versions are suitable for gas and dust applications and approved for Ex II G or D in accordance with the ATEX 2014/34/EU regulations. The intrinsically safe versions must be operated with an approved switch amplifier (see Fig. 6).
The switches with explosion-proof enclosure can be wired via conduit connection or cable gland with Ex approval. The switches may only be used in accordance with the instructions and provisions of the declaration of conformity.

1. WARNING

With option Ex i: The models having light-alloy (aluminium) enclosures or enclosure parts must be protected against all impact or friction which can ignite the explosive atmosphere.

Unprotected area
Ex ia area

Switch amplifier NAMUR
Fig. 6: Operation of temperature switches in intrinsically safe areas

CONTROL PRODUCTS

Maintenance/Cleaning

Maintenance

The pressure switch is maintenance free. Checking the set points lies within the discretion of the user. The usual preventive maintenance work in accordance with the PED and ATEX guidelines must always be carried out

Technical Data

See data sheet
Dimensions in mm (inch)

Fig. 7: Temperature switch type MT1H-..

Contacts: color code and function

C	=root	Lower contacts Upper contacts		
		= purple	C	= brown
NC	=Normally Closed Contact	= blue	NC	= orange
NO	=Normally Open Contact	= red	No	= yellow

Fig. 8: Temperature switch type T2H-...

Contacts: color code and function

C = root

NO $\underset{\substack{\text { Open } \\ \text { Opermally } \\ \text { No red }}}{ }$ NO yellow Open

Fig. 9:Temperature switch
type T1X-.../T1X-Ex...

Fig. 10:Temperature switch type T2X-..

Fig. 11: Temperature switch type ML1H-...

Contacts: color code and function

C = root
NC = Normally Closed Contact

$=$ purple	C	$=$ brown
= blue	NC	$=$ orange
$=$ red	NO	$=$ yellow

Electrical Ratings

Micro switch	Special Characteristics	Volt AC $50 / 60 \mathrm{~Hz}$	Ind. Load A	Res. Load A	Volt DC	Ind. Load A	Res. Load A	Notes
H	Microswitch with silver contacts	$\begin{aligned} & 125 \\ & 250 \\ & 480 \end{aligned}$	$\begin{array}{r} 10 \\ 10 \\ 3 \end{array}$	$\begin{array}{r} 10 \\ 10 \\ 3 \end{array}$	$\begin{array}{r} 6 \\ \text { to } \\ 24 \end{array}$	0,50	0,5	Small hysteresis; high AC / low DC loads
M	Microswitch with silver contacts	$\begin{aligned} & 125 \\ & 250 \\ & 480 \end{aligned}$	$\begin{array}{r} 10 \\ 10 \\ 3 \end{array}$	$\begin{array}{r} 10 \\ 10 \\ 3 \end{array}$	$\begin{array}{r} 12 \\ 24 \\ 250 \end{array}$	$\begin{aligned} & 5,00 \\ & 1,00 \\ & 0,25 \end{aligned}$	$\begin{array}{r} 15,0 \\ 2,0 \\ 0,4 \end{array}$	Medium hysteresis; high AC and DC loads
GH*		125	1	1	24	1,00	1,00	Small hysteresis
GM*	with gold plated contacts for low voltage and low current	30	0.1	0.1	30	0,10	0,10	Medium hysteresis
S	Microswitch with silver contacts	$\begin{aligned} & 125 \\ & 250 \\ & 480 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \end{aligned}$	$\begin{array}{r} 12 \\ 24 \\ 250 \end{array}$	$\begin{array}{r} 10,00 \\ 5,00 \\ 0,03 \end{array}$	$\begin{array}{r} 15,0 \\ 6,0 \\ 0,2 \end{array}$	Adjustable hysteresis
J	Microswitch sealed - with silver contacts	$\begin{aligned} & 125 \\ & 250 \\ & 480 \end{aligned}$	$\begin{array}{r} 10 \\ 10 \\ 3 \end{array}$	$\begin{array}{r} 10 \\ 10 \\ 3 \end{array}$	$\begin{array}{r} 6 \\ \text { to } \\ 24 \end{array}$	0,50	0,5	Small hysteresis
G...RD	Microswitch with silver contacts	$\begin{aligned} & 125 \\ & 250 \\ & 480 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{array}{r} 12 \\ 24 \\ 250 \end{array}$	$\begin{gathered} 15,00 \\ 10,00 \\ 0,20 \end{gathered}$	$\begin{array}{r} 15,0 \\ 15,0 \\ 0,3 \end{array}$	Manual reset

We recommend gold plated contacts for all intrinsically safe and other applications with low voltage/power.

[15	IMPORTANT

Data only valid for application in non-explosive atmosphere.
We recommend to use a prefuse of the maximum current rating from the table above according to the load switched.

Operation pressure:

Housing: $\quad-40^{\circ} \mathrm{C} \ldots+75^{\circ} \mathrm{C}$, except temperature code $454,601,603$
Sensor: See table „Measuring Ranges", „Max. temperature at sensor"

Temperature switch with remote sensor
Measuring Ranges

Order code	Max. temperature at sensor $\left[{ }^{\circ} \mathrm{C}\right]$	Adjustment range $\left[{ }^{\circ} \mathrm{C}\right]$	
154	$-73 \ldots$	+93	$-45 \ldots \quad+66$
251	$-73 \ldots$	+149	$+10 \ldots+121$
351	$-73 \ldots$	+205	$+66 \ldots+177$
601	$-18 \ldots$	+343	$+149 \ldots+227$
603	$-18 \ldots$	+343	$+160 \ldots+316$

Order code	Adjustment range [$\left.{ }^{\circ} \mathrm{C}\right]$	Approximate hysteresis of different types of microswitches								
		GH, H		J		M		S adjustable from to		G*
154	-45... +66	0.55	1.1	0.55	1.7	1.1	2.2	2.2	8.2	2.8
251	+10... +121	0.55	1.1	0.55	1.7	1.1	2.2	2.2	8.2	2.8
351	+66... +177	0.55	1.1	0.55	1.7	1.1	2.2	2.2	8.2	2.8
601	+149... +227	1,10...	2,2	1,60...	2,8	2,2...		3,8...	13,8	2,8
603	+160... +316	1,10...	2,2	1,60...		2,2...	3,3	3,8...	13,8	2,8

* can be reset

	IMPORTANT
The values given are for use in liquids. For gaseous media hysteresis will be approx. double the values.	

Local mount temperature switches
Measuring Ranges

Order code	Max. temperature at sensor $\left[{ }^{\circ} \mathrm{C}\right]$	Adjustment range $\left[{ }^{\circ} \mathrm{C}\right]$	
201	$-73 \ldots$	+121	$-45 \ldots \quad+24$
202	$-73 \ldots$	+121	$-9 \ldots+60$
203	$-73 \ldots$	+121	$+24 \ldots \quad+93$
351	$-73 \ldots$	+205	$+38 \ldots+107$
204	$-73 \ldots$	+121	$-45 \ldots+93$
354	$-73 \ldots$	+205	$+38 \ldots+177$
454	$-18 \ldots$	+260	$+66 \ldots+232$

Reset values									
Order code	Adjustment range	Approximate hysteresis of different types of microswitches							
	[${ }^{\text {C }}$]	GH, H		J		M, GM		S adjustable from	G*
201... 354	-45... +177	0.55	1.6	0.55	2.2	1.7	3.3	$3.8 \quad 11.0$	2.8
454	+66... +232	1.60	3.3	2.20	3.8	3.3	5.0	5.516 .5	2.8

* can be reset

DE IMPORTANT

The values given are for use in liquids. For gaseous media hysteresis will be approx. double the values.

Operatio pressure:

Without thermowell: Max. 21 bar (max. 300 psi)
With thermowell: See table „Pressure-/Temperature rating
Pressure / Temperature rating (values in bar)

Thermowell material	$\mathbf{+ 2 2}$	$\mathbf{+ 9 4}$	$\mathbf{+ 2 1 0}$	$\mathbf{+ 3 2 0}$	$\mathbf{+ 4 3 0}$
Brass	350	295	70	0	0
Steel	365	350	335	320	245
Stainless steel	490	435	390	380	365

